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Received: 18 February 1998 / Revised: 20 March 1998 / Accepted: 29 March 1998

Abstract. We introduce a simple model which shows non-trivial self organized critical properties. The
model describes a system of interacting units, modelled by Polya urns, subject to perturbations and which
occasionally break down. Three equivalent formulations – stochastic, quenched and deterministic – are
shown to reproduce the same dynamics. Among the novel features of the model are a non-homogeneous
stationary state, the presence of a non-stationary critical phase and non-trivial exponents even in mean
field. We discuss simple interpretations in term of biological evolution and earthquake dynamics and we
report on extensive numerical simulations in dimensions d = 1, 2 as well as in the random neighbors limit.

PACS. 64.60.Ht Dynamic critical phenomena – 64.60.Lx Self-organized criticality; avalanche effect

Our understanding of Self Organized Criticality
(SOC) [1], as a general framework for the emergence of
scale-free behavior in Nature, has greatly benefitted from
the introduction of simple models. Even though models
such as the sandpile [1] and the Bak-Sneppen [2] are too
simple to capture the complexity of natural phenomena
such as earthquakes [3] and biological evolution [4,5], they
have, nonetheless, identified some basic mechanisms lead-
ing to SOC. These systems have been a starting point
both for the development of more complex and realistic
models of natural phenomena [6,7], and for analytical ap-
proaches [8–11], which have led us to a much deeper under-
standing of SOC. Indeed, we can now identify some basic
“routes to Self Organized Criticality” such as those based
on sandpile [1], extremal dynamics [10,12], memory [13]
and network [14] models.

In this Rapid Communication we propose a qualita-
tively different “route to SOC” based on a very simple
model of interacting Polya urns. Its qualitative differences
with respect to other SOC models are that it is character-
ized by a non-homogeneous stationary state and by non
trivial exponents even in the mean field case. Furthermore,
we shall show numerical evidence for the occurrence of a
non-stationary self organized critical state. Moreover, the
model can be formulated in three different but equivalent
ways. This fact, on one hand allows us to use a wide vari-
ety of tools to investigate its critical properties, and on the
other it bridges different descriptions of the same process.
All these features can well be relevant in the description of
natural phenomena. The model indeed provides a general
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framework for the emergence of SOC which, as we shall
discuss, can be applied both to coevolution and to large
scale earthquakes dynamics. Note indeed that the pat-
terns of earthquakes activity are highly non-homogeneous
and that such a system is, in principle, non-stationary.
The same applies to our ecosystem, which is in a non-
stationary state where ever fitter species replace less fit
ones.

We consider a system of interacting Polya urns ar-
ranged on a d-dimensional lattice. A Polya urn is a simple
model to study e.g. the occurrence of accidents [16]. Each
urn contains initially b black balls and 1 white one. As in
sandpile models, at each time step we randomly select a
site and attempt to add a “grain of sand”, i.e. a white
ball, to the corresponding urn. A ball is drawn from the
selected urn: if the ball is white the attempt is successful
and a new white ball is added to the urn. If it is black
a “fatal accident” occurs: the urn becomes unstable and
it “topples”. The toppling mechanism is as follows: 1) the
urn is reset to 1 white ball and b black ones and 2) for each
white ball of the original urn a similar attempt to add a
white ball is made on a randomly chosen nearest neighbor
urn. In this way, white balls released by an unstable urn
can provoke some “fatal accident” in nearby urns (addi-
tion of white ball to already unstable urns leaves them
unstable but it increases the number of white balls in it).
The process stops when all balls are redistributed provok-
ing no further toppling. A new attempt to add a ball to a
randomly chosen urn is made, at the next time-step, and
the process goes on. Dissipation of balls at the boundary,
as in the sandpile [1], can also be considered to allow the
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Fig. 1. Snapshot of a section of the d = 2 system of size
L = 128 for b = 2.50 and λ = 10−2.

system to relax to a stationary state. Actually, in order
to keep the same definition of the model both in finite
dimensions and in the random neighbor version, we con-
sider here “bulk dissipation” modifying step 2) into: 2’)
with probability λ all white balls disappear, otherwise 2)
applies.

Let ei be the number of subsequent additions of white
balls in urn i, since the last draw of a black one. Then urn
i contains b black balls and ei+1 white ones. The toppling
probability, i.e. the probability to draw a black ball from
urn i, is then

fi =
b

ei + b+ 1
· (1)

In general, the probability that urn i topples, if it receives
q white balls from neighbors, is

wi(q) = 1−
(ei + q)!Γ (ei + b+ 1)

ei!Γ (ei + q + b+ 1)
· (2)

The Γ -function is introduced here in order to generalize
our discussion to any real positive b.

The system spontaneously evolves to a critical state
which is generally characterized by a non uniform distri-
bution of the variables ei. A snapshot of the system for
b = 2.5 is shown in Figure 1. It is clearly seen that very
stable urns ei � 1 coexist with less stable ones.

We say that the initial perturbation causes an
avalanche of size s and volume v, where s is the num-
ber of toppling events occurring before the system returns
stable and v is the number of distinct sites involved in
the avalanche. Operationally all urns which become unsta-
ble after the first event topple simultaneously. The urns,
which as a result of this first wave of topplings become
unstable, topple simultaneously in a second wave, and so
on. An avalanche is then also characterized by the num-
ber w of such waves occurring before the system returns
stable. Finally, one can also measure the total number E
of white balls involved in the avalanche event. Of course,
if the initial urn resists absorbing an extra white ball,
s = v = w = E = 0. The distribution of avalanche sizes
in the critical state

P (s) ∼ s−τ (3)

has a power law behavior. In this state the volume, waves
and the number E of the avalanche are related to its size
by power laws

v ∼ sd/z, w ∼ sω, E ∼ sγ . (4)

The four exponents τ, z, ω and γ define the critical state
of the model. They are given in Table 1 for several values
of b > 1 in d = 1, d = 2 and in the random neighbors
version (K “neighbors” are randomly chosen each time
among all sites) respectively1. For b ≤ 1 the system be-
comes non-stationary: the number of white balls in the
system increases linearly in time. In spite of this, we have
found that avalanches have still a well defined distribu-
tion. We have analyzed in particular the border-line case
b = 1: for the random neighbor model, we have found
that in a range of times (from 105 to 2× 108), for various
system sizes (up to n = 214 urns) and different dissipa-
tion rates (λ = 10−2 and λ = 10−3), the distribution of
avalanche sizes follows equation (3) on more than three
decades, with an exponent which is, for all these cases, al-
ways in the range τ ∈ [1.95, 2.05]. In d = 2, for sizes up to
n = 214 and in a range of times from 5×107 to 3×108, we
have similarly found τ ∈ [2.03, 2.11]. In d = 1, extensive
simulations over lattice lengths of 256 and 512 sites and
on a range of times from 109 to 6 × 109, we have found
τ ∈ [2.10, 2.21].

In an ecosystem species are probed by changes in the
environment in a fashion which goes under the name of co-
evolution. Namely, the environment, which is constituted
by the interaction among all living organisms, is implicitly
modified by each single being and determines its fate as
well2. From the point of view of any single species, such
perturbations impose a random selective pressure which
eventually leads to a change in the constitution of the
species or to its extinction. A particular character, de-
veloped by a random mutation in a subspecies, can be
“selected” by evolution if it becomes essential for the sur-
vival of the whole species in a changed environment [4].
In this process, which is driven by chance, species become
more and more complex. A more complex species has also
a wider variability in subspecies which, in this process,
will make it more resistant. In much the same way, Polya
urns in the model “evolve” increasing their “complexity”
and their robustness to external perturbations. The model
also assumes that the extinction of well adapted “species”
(i.e. urns with ei � 1) produces a larger perturbation
than that caused by poorly fit species.

In this toy ecosystem, each species has exactly the
same chances of any other species to survive, when it ap-
pears (ei = 0). There is no a priori genetic characteristic,

1 The parameter λ, which introduces bulk dissipation, sets
the upper cutoff of the critical states. We found that, in d =
1, 2, dissipation at the boundaries, as in the sandpile model,
leads to similar results. In the random neighbors version, we
have found that the exponents do not depend on the number
K of neighbors chosen.

2 Just as an example, one could think at the selection pres-
sure produced by the presence of oxygen in the air, which has
been initially produced by some zoo-phyte.
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Table 1. The exponents for different values of b for d = 1 and sizes up to L = 512, d = 2 and L = 128, and for the random
neighbor model with n = 16384 sites and K = 2.

d = 1 d = 2 d =∞
b τ z ω γ τ z ω γ τ ω

1.40 1.80(2) 2.45(1) 0.61(1) 1.44(1) 1.83(1) 3.17(2) 0.44(1) 1.248(3) 1.885(7) 0.34(3)
1.60 1.69(2) 2.35(1) 0.60(1) 1.36(1) 1.74(1) 3.10(2) 0.45(1) 1.183(3) 1.80(1) 0.38(2)
1.80 1.61(2) 2.29(1) 0.60(1) 1.31(1) 1.68(1) 3.03(2) 0.45(1) 1.134(1) 1.68(1) 0.40(2)
2.00 1.55(2) 2.24(1) 0.60(1) 1.27(1) 1.63(1) 2.97(2) 0.46(1) 1.103(1) 1.667(7) 0.42(1)
2.30 1.47(2) 2.18(1) 0.59(1) 1.23(1) 1.57(1) 2.90(2) 0.48(1) 1.069(1) 1.642(9) 0.44(1)
2.50 1.43(2) 2.15(1) 0.59(1) 1.21(1) 1.55(1) 2.84(2) 0.49(1) 1.056(1) 1.624(8) 0.45(1)
2.70 1.39(2) 2.13(1) 0.59(1) 1.19(1) 1.54(1) 2.81(2) 0.50(1) 1.045(2) 1.609(8) 0.47(1)
3.00 1.36(2) 2.11(1) 0.59(1) 1.17(1) 1.52(1) 2.76(2) 0.51(1) 1.034(3) 1.595(7) 0.47(1)

such as fitness, which guarantees the survival of a species.
Its survival will rather depend on its “ability” to adapt
constantly, via random mutations, to the changing envi-
ronment. This perspective, also suggests that an opera-
tional measure of fitness (or resistance) of a species, is pos-
sible using equation (1): high ei means high fitness. Note
that this differs from the concept of fitness introduced in
most SOC models of coevolution [2,7,14]. In these, fitness
is related to reproduction rates, whereas in our simplified
picture of coevolution, fitness emerges as a measure of the
resistance against extinction of a species.

We show now that this different notion of fitness, when
introduced as an intrinsic property of each species, leads
to exactly the same coevolutionary process. To be more
precise, let us assume that the probability fi of extinc-
tion of species i under a perturbation, is no more given
by equation (1), but it is rather fixed for each species. In
particular, this intrinsic property is drawn randomly for
each species from a distribution ρ(f). Accordingly we also
replace equation (2) by wi(q) = 1− (1− fi)q. Species are
probed by random perturbations (addition of white balls)
and, as before, the extinction of species i perturbs “neigh-
boring” species in the interaction web via the same top-
pling mechanism. When a species disappears, its “niche”
(site) is immediately occupied by a new species, with a
new randomly drawn fitness value f ′i . Thus, for

ρ(f) = bf b−1 (5)

we obtain exactly the same stochastic dynamics given by
equations (1, 2). In order to show the equivalence, it is
enough to show that equation (5) leads to the same rates
wi(q) of equation (2). Consider one particular urn and
let ei,t be the value of the corresponding variable after t
drawings. The event ei,t = e occurs with a probability3

P (ei,t = e|ei,t−e = 0, fi) = (1 − fi)e. Taking the average
over ρ(f), we find

P (ei,t = e|ei,t−e = 0) =
Γ (b+ 1)e!

Γ (e+ b+ 1)
· (6)

3 Here t is a “local” time on site i, which measures the num-
ber of perturbations on that site. Therefore the event ei,t = e
implies ei,t−e = 0. Accordingly we used the notation P (ei,t =
e|ei,t−e = 0, fi) (note indeed that P (ei,t = 0|ei,t = 0, fi) = 1
for e = 0).

Using detailed balance, P (ei,t+q = e + q|ei,t−e = 0) =
wi(q)P (ei,t = e|ei,t−e = 0), we easily recover equations (1,
2). The equivalence of the two models has been also tested
in numerical simulations.

The initial definition of the model is completely
stochastic, whereas in the formulation based on equation
(5), fi are fixed, quenched variables, which are renewed
stochastically at each extinction event. The equivalence
of the two descriptions is an example of a general map-
ping [12], recently developed to deal with extremal dy-
namics. Its application in the biological context are also
discussed in reference [13].

There is a further interesting mapping, originally de-
veloped in the context of interface growth [17], which
can be applied to the present model. As in the sandpile
model [1], we define the toppling probability as

fi = 0 if ei < hi and fi = 1 if ei ≥ hi . (7)

While in the sandpile the thresholds are fixed hi = 2d,
we introduce here a model where hi are randomly drawn
from a given distribution ψ(h) after each toppling event
on site i. The choice

ψ(h) =
bΓ (b+ 1)Γ (h)

Γ (h+ b+ 1)
(8)

reproduces a dynamics which is equivalent to the previous
two formulations of the model. To prove this, it is enough
to derive the statistics of the number ei = hi − 1 of per-
turbations that an urn with fi = f will overcome before
toppling. Clearly P (hi = h|fi = f) = f(1−f)h−1. Taking
the average over the distribution (5) of f leads indeed to
equation (8).

This formulation is completely deterministic: it as-
sumes that each urn appears with a prescribed “life-
time” measured in terms of perturbations. As soon as
this lifetime is reached, the urn topples. This is the same
threshold dynamics used in the sandpile model. Here how-
ever thresholds hi are very broadly distributed (note that
ψ(h) ∼ h−b−1), whereas in the sandpile ψ(h) = δ(h− 2d).
The sandpile is a paradigm for seismic phenomena: each
site represent a fault which is perturbed by the slow ad-
dition of stress energy. When the energy load ei of a site
exceeds the threshold hi, the fault breaks down and all
the energy is released to neighbor sites. Our model also
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proposes a different description of the same phenomenon:
each addition of stress energy has the same probability fi
to provoke an earthquake. When this occurs, it provokes
the energy release and a local seismic rearrangement, i.e.
fi → f ′i .

Using the quenched version of the model given by
equation (5), it is easy to derive the effective distribu-
tion ρ̃(f) of the fi’s in the system at the stationary
state. It is enough to consider detailed balance in an
interval fi ∈ [f, f + df) under a single perturbation.
The probability that, in one time step, one fi leaves
this interval is fρ̃(f)df . This has to balance the num-

ber ρ(f)df
∫ 1

0
df ′f ′ρ̃(f ′) of sites which enter this interval.

This gives ρ̃(f) = (b− 1)f b−2. With equation (6) one can
also derive the distribution of ei in the system. Indeed,
P (ei,t = e) = P (ei,t = e|ei,t−e = 0)P (ei,t−e = 0) where
P (ei = 0) = 1 − 1/b is derived imposing normalization.

This leads to P (ei) ∼ e
−b
i .

As b → 1+, both the distributions ρ̃(f) and P (ei) be-
come unnormalizable and the probability of finding sites
with ei = 0 vanishes. Accordingly, numerical simulations
show that, for b ≤ 1, the system average of ei increases
linearly with time and the system never reaches a sta-
tionary state. The divergence of normalization of ρ̃(f) at
f = 0 occurs because less “fit” species are more rapidly
replaced than more “fit” ones. For b ≤ 1 the search for
the “perfect” species fi = 0 never stops. For b > 1,
the probability that a perturbation causes a toppling is

Ptop =
∫ 1

0 dffρ̃(f) = b−1
b , which also vanishes as b → 1.

This means that, for b ≤ 1, avalanches occur more and
more rarely as time goes on.

Let us discuss in more detail the random neighbor
model. Numerical results are consistent with z/D = 1 and
γ = max[1, 1/(b−1)], which is what one expects from the
observation that each site is involved at most once in the
same avalanche (the exponent γ = 1/(b− 1) for 1 < b < 2
comes from the limit laws of Levy variables). On the other
hand we see that the exponents τ and ω differ from their
usual mean-field values τ = 3/2 and ω = 1/2, and that
such values are eventually reached for b→∞. This devia-
tion τ 6= 3/2 can be understood as an effect of correlation.
In order to show this, let us review the argument leading
to τ = 3/2. Consider an avalanche and let Mt be the num-
ber of unstable sites after t toppling events. Mt performs
a random walk and the size s = min{t : Mt = 0, t > 0}
of the avalanche is the first return time of Mt to 0. There-
fore s has the same distribution of the first return times
to the origin of a random walk P (s) ∼ s−3/2. Since the
steps |Mt −Mt−1| of the random walk are bounded by
the coordination number K, the only possibility for a de-
viation from τ = 3/2 is to have correlations. Correlations
indeed arise because a toppling event may release many
white balls and these are transported along the avalanche
thus modifying the probability of toppling of successive
sites. The theoretical calculation of the exponents for the
random neighbor version is a challenging problem under
current investigation.

In conclusion, we have introduced a very simple model
which displays non-trivial self organized critical features.

The model was analyzed numerically and we also derived
some analytic result. The main features of the model are
non-homogeneous critical states, a critical non-stationary
state in a region of the control parameter (b ≤ 1) and
non-trivial exponents even in the mean field limit. Further-
more, it allows for three different equivalent formulations,
which allow one to better investigate and understand the
nature of the critical state. As a closing remark, we no-
tice that the non-stationary regime can be relevant both
for the description of ecological systems and for earth-
quake dynamics. Both these systems are indeed not in a
stationary state. Interestingly enough, the exponent τ is
larger than 2 for b < 1. Both the Gutenberg-Richter law
for earthquakes [3] and the extinction size distribution [5]
also display avalanche exponents close to 2.
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